
COoperative Cyber prOtectiON for
modern power grids

D4.2 COCOON System Architecture

Distribution Level PU
Responsible Partner University of Glasgow (UGLA)
Prepared by Filip Holik (UGLA), Tahira Mahboob (UGLA),

Awais Aziz Shah (UGLA), Dimitrios Pezaros (UGLA)
Checked by WP Leader Angelos Marnerides (UCY)
Verified by Reviewer #1 Angelos Marnerides (UCY)

10/09/2024
Verified by Reviewer #2 Elvira Sanchez Ortiz (ENCS)

10/09/2024
Approved by Project Coordinator Angelos Marnerides (UCY)

16/09/2024



Disclaimer
Funded by the European Union. Views and opinions expressed are however

those of the author(s) only and do not necessarily reflect those of the European
Union or the Directorate General for Communications Networks, Content and
Technology. Neither the European Union nor the Directorate General for Com-
munications Networks, Content and Technology can be held responsible for them.

1



Deliverable Record

Planned Submission Date 17/09/2024
Actual Submission Date 16/09/2024
Status and version FINAL

Version
(Notes)

Date Author(s) Notes

0.1 (Draft) 13/08/2024 Filip Holik (UGLA), Tahira
Mahboob (UGLA), Awais
Aziz Shah (UGLA), Dim-
itrios Pezaros (UGLA)

ToC, initial structure, work
allocation

0.2 (Draft) 21/08/2024 Tahira Mahboob (UGLA),
Filip Holik (UGLA)

Main sections

0.3 (Draft) 30/08/2024 Filip Holik (UGLA), Tahira
Mahboob (UGLA), Geor-
gios Kryonidis (AUTH), Hi-
manshu Goyel (TU Delft),
Vetrivel S. Rajkumar (TU
Delft), Alfan Presekal (TU
Delft), Alex Stefanov (TU
Delft), Viktor Piotr Pa-
padopoulos (Selene CC)

First draft - main sections
completed, partners inputs

0.4 (Draft) 04/09/2024 Filip Holik (UGLA), Tahira
Mahboob (UGLA), Luna
Moreno Diaz (ING), David
Senas Sanvicente (ING), Es-
ther Ayas Iglesias (CUE)

Draft edits, partners contri-
butions

0.5 (Draft) 08/09/2024 Filip Holik (UGLA), Tahira
Mahboob (UGLA)

Draft sent to the reviewers

1.0 (Final) 13/09/2024 Filip Holik (UGLA), Tahira
Mahboob (UGLA)

Final version

2



Contents
Executive Summary 10

1 Introduction 11
1.1 Scope of the deliverable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Relation with other work packages and tasks . . . . . . . . . . . . . . . . . . . 11
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 CPN system architecture 13
2.1 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Architecture requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Services decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Programmable networking devices . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Traditional networking devices . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Programmable networking devices . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 COCOON Programmable Node platforms . . . . . . . . . . . . . . . . . 18

3 COMML architecture 20
3.1 COMML agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Agent functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Southbound API (SBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 eBPF implementation types . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.4 eBPF instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.5 eBPF verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.6 eBPF maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.7 eBPF helper functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 COMML switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Switch variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Switch structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Switch functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 IOL architecture 32
4.1 Service broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Event handler and listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Libraries and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 The Twisted framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 The Protocol Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Twisted and Protocols Buffer for CPN implentations . . . . . . . . . . . 37
4.3.4 LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.5 Clang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 eBPF µNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.1 eBPF µNF code structure . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.2 eBPF µNF code snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Northbound API (NBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3



CONTENTS

5 CPN pilot use cases 43
5.1 Mininet emulation (SGSim) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Digital substation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Energy communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 PV power plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Secure regional electricity data operations . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions 49

Bibliography 50

4



List of Figures
1.1 The relationship of D4.2 with other tasks, deliverables and WPs . . . . . . . . . 12

2.1 Overall CPN system architecture in a realistic topology scenario . . . . . . . . . 13
2.2 Detailed CPN system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Services decomposition in the CPN system architecture . . . . . . . . . . . . . . 16
2.4 Exemplar of an industrial unmanaged switch . . . . . . . . . . . . . . . . . . . . 17
2.5 Exemplar of managed switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Exemplar of a Raspberry Pi SBC . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Exemplar of a NUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Exemplar of a server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 The COMML architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 SBI communications between CPN controller and CPN . . . . . . . . . . . . . . 23
3.3 eBPF implementation types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Program verification by eBPF verifier . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Example of Memory Leak attempt rejected by the verifier . . . . . . . . . . . . . 27
3.6 eBPF programs and applications can access the eBPF maps via system calls . . 28

4.1 The IOL architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Example of TCP handshake between CPN and the CPN controller during initial

the connection establishment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Programming paradigms for networking applications . . . . . . . . . . . . . . . 34
4.4 Data Serialization with Protocol Buffer . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 HLL (high level programming language) code to bytecode conversion paradigm

adhered by the CPN implementation style on the IOL . . . . . . . . . . . . . . . 38

5.1 Smart Grid Simulator (SGSim) platform for CPN development testing . . . . . . 43
5.2 Digital substation topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Energy Community pilot configuration. . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Electrical and communication layout of the pilot PV plant. . . . . . . . . . . . . 46
5.5 Secure regional electricity data operation pilot environment . . . . . . . . . . . . 48

5



List of Tables
3.1 SBI Message Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Helper eBPF functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Helper packet manipulation functions . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Helper network control functions . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Other function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6



Definition of Acronyms
µNF Micro Network Function. 10, 11, 14–16, 20–23, 27–29, 31–34, 36, 38–41, 49

AC Alternating Current. 47

AD Anomaly Detection. 15, 42, 43

API Application Programming Interface. 14, 15, 25, 42, 49

ARM Advanced RISC Machine. 18, 21

AUTH Aristotle University of Thessaloniki. 12

COCOON COoperative Cyber prOtectiOn for modern power grids. 10, 11, 13, 15, 16, 40, 42–44, 47, 49

COMML Control Measurement and Monitoring Layer. 10–16, 20–22, 28, 30, 31, 36–38, 41, 43, 49

CPN COCOON Programmable Node. 10–25, 28, 30–39, 42–44, 46–49

CPU Central Processing Unit. 18, 19, 21, 25

CSL Cybersecurity Services Layer. 10, 11, 13–16, 20, 21, 27, 32, 33, 39, 41, 42, 44, 48, 49

DPDK Data Plane Development Kit. 18–20, 24, 25, 49

DPID Datapath identitifier. 22, 30, 36, 37

DRL Deep Reinforcement Learning. 15

eBPF extended Berkeley Packet Filter. 10, 11, 15, 17, 18, 20–29, 32–34, 36, 38–41, 49

ELF Executable and Linkable Format. 38

EPES Electrical Power and Energy Systems. 10, 13, 45, 49

FDII False Data Injection Identification. 38, 46, 47

FIFO First In First Out. 25, 31

GOOSE Generic Object-Oriented Substation Event. 13, 39, 43, 44

GPL General Public License. 41

HEDNO Hellenic Electricity Distribution Network Operator. 12, 45, 46

HIL Hardware in the Loop. 44

HLL High level programming language. 38

HTML HyperText Markup Language. 42

HTTP Hypertext Transfer Protocol. 35

I/O Input/Output. 34

ICMP Internet Control Message Protocol. 40

IEC International Electrotechnical Commission. 13

IEC104 IEC 60870-5-104. 13, 43, 46

IED Intelligent Electronic Device. 39, 44

IKE I&K Electrical Engineering Systems. 45

ING Ingelectus. 12, 47

7



Definition of Acronyms

IOL Instrumentation and Orchestration Layer. 10–16, 20–22, 27, 30–32, 34, 36–38, 41, 42, 48, 49

IP Internet Protocol. 30, 40

ISO/OSI International Organization for Standardization / Open Systems Interconnection. 13

JiT Just in Time. 20, 21, 24

JSON JavaScript Object Notation. 36, 42

LLVM Low Level Virtual Machine. 38

LV Low-Voltage. 45, 47

MAC Medium Access Control. 40, 41

ML Machine Learning. 14

MV Medium-Voltage. 45–47

NBI Northbound Application Programming Interface. 10, 11, 14, 15, 32, 33, 41, 43, 49

NETCONF Network Configuration Protocol. 22

NIC Network Interface Cards. 18, 19, 23, 24

NOS Network Operating System. 19

NUC Next Unit of Computing. 10, 18, 46

OF OpenFlow. 22, 23, 28

ONF Open Networking Foundation. 22

ONL Open Network Linux. 19

OS Operating System. 24

OT Operational Technology. 24

P4 Programming Protocol-independent Packet Processors. 17

PC Personal Computer. 43

PDP Programmable Data Plane. 10, 15, 20, 22, 23, 28, 33, 34, 36–38, 49

PLC Programmable Logic Controller. 47

POI Point of Interconnection. 46, 47

PPC Power Plant Controller. 47

PV Photovoltaic. 12, 13, 45–47, 49

RAM Random-Access Memory. 18, 25

rBPF Rust userspace Berkeley Packet Filter. 24

REST Representational State Transfer. 42, 49

RSC Regional Security Coordinators. 47

RTDS Real-Time Digital Simulator. 44

SBC Single Board Computer. 10, 18, 44

SBI Southbound Application Programming Interface. 10, 15, 21–23, 30, 32, 33, 38, 42, 43

SCADA Supervisory Control and Data Acquisition system. 46

SDG SCADA Data Gateway. 45, 46

SDN Software Defined Networking. 17, 22

8



Definition of Acronyms

SELENE CC Southeast Electricity Network Coordination Centre. 12, 49

SGSim Smart Grid Simulator. 43, 44, 49

SS Secondary Substations. 47

SSL Secure Socket Layer. 34

SV Sampled Values. 13, 43, 44

TCP Transmission Control Protocol. 30, 33–35, 40

TCP/IP Transmission Control Protocol / Internet Protocol. 31, 47

TLS Transport Layer Security. 34

TRL Technology Rediness Levels. 10, 18, 25, 43, 49

TUD TU Delft. 12

uBPF userspace Berkeley Packet Filter. 24, 25

UDP User Datagram Protocol. 34

UGLA University of Glasgow. 19

VM Virtual Machine. 43

WP Work Package. 11, 12, 47

XDP Express Data Path. 20, 23, 25

9



Executive Summary
The COoperative Cyber prOtectiOn for modern power grids (COCOON) project main goal

is to use an inter–disciplinary approach to deliver a solution for cyber protection of modern
and future Electrical Power and Energy Systems (EPES) networks. This solution will utilize a
Programmable Data Plane (PDP) paradigm which will allow deployment of custom compute–
intensive cyber protection applications equipped with accelerated data processing, forwarding
and control functionalities. Unlike current traditional networks, which require dedicated mid-
dleboxes to deliver specific security functionality, a PDP device can support multiple security
functions dynamically as per the operator’s requirements supported by vast number of device
types, such as the Single Board Computer (SBC), the Next Unit of Computing (NUC) and the
programmable switches. Such a holistic network solution will provide up–to–date protection
against modern threats emerging from the digitization of EPES networks.

The main objective of this deliverable, D4.2: COCOON system architecture, is to de-
fine an architecture for the COCOON Programmable Node (CPN) - a device utilizing the
PDP paradigm and serving as a platform for the COCOON Toolset deployed on a central-
ized controller which will integrate cyber security services used by the EPES operators. The
deliverable elaborates on foundations already described in previous deliverables, specifically
deliverable D4.1 presenting CPN architectural abstractions, blueprints and requirements; and
deliverable D1.1 presenting the Control Measurement and Monitoring Layer (COMML) and
its architecture requirements and properties. The proposed system architecture will be used in
development process of the entire CPN system. Moreover, the project participants can use this
deliverable as a guide for developing Instrumentation and Orchestration Layer (IOL) Micro
Network Function (µNF) supporting high–level Cybersecurity Services Layer (CSL) services.

The deliverable structure follows the layers in System architecture layers. Section 1 in-
troduces scope of the deliverable, its relation with other work packages and tasks and the
methodology. Section 2 presents the overall CPN system architecture and explains how CSL
services are translated into COMML packet–level primitives. This process is called services
decomposition and spans across all the architectural layers. Lastly, description of the devices
that can support CPN deployment is provided. Section 3 describes the COMML of the CPN
architecture and its two main components – the agent and the switch. An introduction to
extended Berkeley Packet Filter (eBPF) implementation is provided, such as the instruction
set, kernel helper functions, maps and the verifier. These details provide crucial set of infor-
mation that is required for the development of µNFs. This section introduces the Southbound
Application Programming Interface (SBI) and enlists supported message types.

Section 4 details the IOL and its elements, including the service broker, the event handler
and the listener functions, leveraged libraries and tools. Implementation details of eBPF µNFs
is provided and explained via an exemplar code of an eBPF µNF. Additionally, this section
introduces the Northbound Application Programming Interface (NBI) definitions, required for
communicating with the CSL. It is noted that, at this stage of the project, the NBI has not
been finalized. This stems from close dependence of the NBI’s modules’ definitions and related
implementation, to the requirements from CSL services. A comprehensive detail on the NBI
will be defined as part of the proceeding deliverables. Section 5 presents use cases of the
CPN deployment including an emulated environment for development purposes and the four
pilot topologies for the Technology Rediness Levels (TRL) 7 deployment. Finally, Section 6
concludes the deliverable and summarizes its main contributions.
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1 Introduction
The key aspect of the COCOON project is development of the CPN system composed of

nodes and the controller. This system will act as a platform supporting network interaction for
all the services. The goal of this deliverable D4.2: COCOON system architecture is to provide
detailed system architecture which will support the development of the CPN adhering to the
properties of the DevOps processes defined within task T4.1 and deliverable D4.1.

This deliverable follows up the work laid out in the previous deliverable D4.1 COCOON
Development Blueprint where generalized key concepts of the system architecture, its require-
ments and blueprints were presented. The COMML requirements and properties were then
expanded upon and presented in the deliverable D1.1 Control, Measurement and Monitoring
together with computer network background used in the project. This deliverable finalizes the
CPN system architectural description. Building on this, it also continues to provide useful
background information for the project member in terms of CPN–compatible devices and a
guide for writing custom µNF. Both of these properties will be utilized in pilot demonstrators.

This deliverable describes all aspects of the COMML architecture and the IOL architecture
and presents in detail how all the components and modules will be implemented in COCOON
pilots as well as in real networks.

1.1 Scope of the deliverable
This deliverable is focused at IOL and COMML of the CPN system architecture. The CSL

is out of the scope of this deliverable, but its elements related with the remaining layers are
still mentioned. This includes NBI and CSL services decomposition to µNFs located in IOL
and COMML of a CPN.

Theoretical material presented in this deliverable is limited to programmable networking
devices which can be used for CPN deployment and eBPF-related information such as its in-
struction set, verifier functionality, maps for persistent data storage and eBPF helper functions.
A summary of these features is crucial for future development of µNFs which will be done by
various project members.

The rest of the information is related to the CPN system architecture design which will
form a baseline for the system development and deployment. Several parts such as target
implementation devices and final structure of NBI have not been finalized and this deliverable
points this fact out in relevant sections.

1.2 Relation with other work packages and tasks
This section describes deliverable’s position in relation with other tasks and deliverables

within the project. This deliverable is the second deliverable within the Work Package (WP)
4 and it expands the foundation explained in the deliverable D4.1 COCOON Development
Blueprint produced by T4.1 and the COMML description provided in the deliverable D1.1
Control, Measurement and Monitoring produced by T1.1 as depicted in Figure 1.1.

11



1.3. METHODOLOGY

Figure 1.1: The relationship of D4.2 with other tasks, deliverables and WPs

The goal of this deliverable is to utilize the blueprint from deliverable D4.1 to further refine
the low-level software architecture of the CPN COMML defined in deliverable D1.1 and to
propose the IOL architecture. The COMML together with the IOL provides the complete
system architecture, that will be further utilized for the development of the CPN prototype.

This deliverable includes inputs provided by partners. The details include WP2, WP3, WP5
and WP6 and presents pilot’s topologies and the CPN placement within them.

1.3 Methodology
The methodology used for this deliverable combines offline and online discussions between

partners with the goal of identifying pilot requirements for the CPN system architecture. Based
on these discussion, the CPN system architecture is defined in this deliverable.

Additionally, partners were highly involved in developing Section 5. Specifically, TU Delft
(TUD) provided expertise on topology of a digital substation and their lab setup. Aristotle
University of Thessaloniki (AUTH) and Hellenic Electricity Distribution Network Operator
(HEDNO) provided expertise on energy communities topology, Ingelectus (ING) provided de-
scription of Photovoltaic (PV) power plants and finally, Southeast Electricity Network Coordi-
nation Centre (SELENE CC) provided information about their secure regional electricity data
operations pilot. In summary, this deliverable was written in a collaborative effort following an
iterative development approach with several online meetings for feedback.

12



2 CPN system architecture
This section presents an overall high-level view on the CPN system architecture and its

components, elaborated further in Sections 3 and 4. Figure 2.1 presents this overview and it
will be referenced to in the following sections. It shows an exemplar topology of an EPES
network composed from a primary substation, distributed PV generation and a secondary
substation in the left part. Two main components are highlighted in colors in this part - the
CPN controller (orange) and programmable nodes (green). These components are then mapped
to the right part of the figure which shows the CPN architecture composed of the three layers
- CSL, IOL and COMML.

Figure 2.1: Overall CPN system architecture in a realistic topology scenario

The EPES topology represents the power transmission and distribution all the way from
a power generation (including distributed power generation) to end users - as illustrated in
the bottom part, grayed section. This section is composed from analog devices such as circuit
breakers and sensors which report grid operation values to devices which will transform these
values into a digital form and encapsulate within International Organization for Standardiza-
tion / Open Systems Interconnection (ISO/OSI) communication protocols. These protocols,
which are part of the International Electrotechnical Commission (IEC) 61850 standard, such
as Sampled Values (SV) and Generic Object-Oriented Substation Event (GOOSE), and IEC
60870-5-104 (IEC104) use standard Ethernet connection represented by solid black links in the
figure. Each part of the EPES can use different protocols. For example, a digital primary sub-
station contains a more complex functionality than digital secondary substation, and therefore
uses additional communication protocols used within the substation.

In the figure, the CPN controller is managing multiple CPN. This represents the "ideal"
desirable architecture. Within the COCOON project scope and its pilots, the CPN controller
and both its layers - CSL and IOL can be integrated within a single CPN. In this case, the
CPN will be an autonomous device without connections to any controller. This will simplify
system testing in pilot scenarios.

The desirable version shown in the figure will be tested in a virtualized environment as a
concept for future EPES networks which will be built with centralized control and network
programmability in mind. In this version, CSL and IOL placement is flexible and can either

13



2.1. ARCHITECTURE OVERVIEW

be on a single server device, or two separate devices - either physical, or virtual. The CPN is
always located on a programmable network device.

The right part of Figure 2.1 also shows the relationship between CSL services and µNF in
both IOL and COMML. To provide a general overview, a CSL service must have one or more
supporting µNFs which provides networking functions such as data collection. IOL functions
as a library of these functions which can then be dynamically installed into a CPN pipeline
implemented in the COMML. This relationship will be further elaborated in Section 2.3.

2.1 Architecture overview
The CPN system architecture is composed of three main layers as shown in Figure 2.2,

which is a more detailed depiction of the right part of Figure 2.1. These layers are: the CSL,
the IOL and the COMML. On this architecture representation, CSL is running externally from
the CPN controller due to its NBI flexibility.

Figure 2.2: Detailed CPN system architecture

The IOL and the COMML will be explained in detail in Section 3 and Section 4 respectively,
but in principle, essential functionality provisioned by these layers is:

• The CSL provides a platform for developing third party services, independent of the CPN
platform. These services can be implemented in any programming language and the only
requirement is a compatible Application Programming Interface (API). The CSL will
be primarily implemented on a server as part of the CPN controller and therefore can
support computationally intensive cyber protection applications including the Machine
Learning (ML)–based algorithms.
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2.2. ARCHITECTURE REQUIREMENTS

• The IOL is an abstraction layer between CSL and COMML and it provides NBI and
SBI, respectively, for communication between the layers. It includes the service broker
responsible for handling API requests and µNFs management. This includes installation
of µNF into the COMML PDP of a CPN and their removal. It also processes all data
exchange between CSL services and storage located on the CPNs.

• The COMML utilizes PDP to implement low–layer packet–level primitives and a process-
ing pipeline composed of active µNFs. These functions perform basic network operations
such as extraction of specific packet fields, or their modification. The COMML is also
responsible for efficient data storage of network parameters which can then be provided
to the higher layers.

2.2 Architecture requirements
Architecture requirements were defined in D4.1 in details, but the most important ones,

which were marked as "M" (must have) are summarized in this section.
The IOL must have the following four requirements: (i) an ability to utilize custom eBPF

functions for support of services in the CSL, (ii) include required Linux kernel header files for
providing the CPN functionality, (iii) an ability to manage order of execution of micro-network
functions, (iv) the service broker for management of micro-network functions and APIs.

The COMML must have the following four requirements which are focused on packet pro-
cessing, forwarding, control and monitoring: (i) ability to read and write on network interfaces
and to parse and de–parse packet information for further analysis, (ii) forward the traffic with
minimum overhead, (iii) ability to define basic packet actions - drop and re–route, (iv) ability
to collect and provide various data using eBPF map structures.

2.3 Services decomposition
The COCOON solution in form of the CPN system architecture is based on decomposition of

high-level generic services such as Anomaly Detection (AD) into low-level packet level primitives
such as drop packet which can be supported by a PDP. This is achieved with eBPF µNF which
can be composed into a PDP pipeline.

Figure 2.3 shows the relationship between services, µNFs in IOL, illustrated in orange, and
µNFs in COMML, illustrated in green. A service is always part of the CSL and based on its
complexity, might require one or more µNFs as shown in colored boxes. Note that this layer is
part of the CPN controller and it might be located on the same physical or virtual device as the
IOL as explained in Section 2 and Figure 2.1. An example of a service is "Deep Reinforcement
Learning (DRL) Mitigation" which requires two µNFs - one for data collection, the "yellow
box" and one for blocking functionality, the "brown box". These eBPF are pre-defined at the
IOL, as "DRLM Collection" and "DRLM Blocking", respectively. Services can be dynamically
added without requiring any change in the architecture provided that supporting µNF are
added as well. This might include services such as encryption, authentication, asset discovery,
firewall, network scanning, etc.

Every service must have corresponding eBPF µNF(s) which reside in the IOL and are saved
as a source code in a "C file". Prior to their usage by the COMML, they need to be pre-
compiled into an "object file". Note that the example in Figure 2.3 shows the forwarding µNF
which does not have corresponding CSL service. Every networking functionality has to be
programmed into an µNF and these µNFs serve as a building block, that are then used by CSL
services, or the service broker to provide network operations.

15



2.4. PROGRAMMABLE NETWORKING DEVICES

Figure 2.3: Services decomposition in the CPN system architecture

Finally, Figure 2.3 shows an example of two CPNs which are both managed by a single CPN
controller. Every CPN can have a different processing pipeline which is composed of µNFs from
the IOL. These can be installed and uninstalled dynamically upon the service broker request.
The request is triggered from the CSL dynamically. In the example, the CPN1 has 4 installed
µNFs while the CPN2 has 2. It is worth mentioning that the order of µNFs in the pipeline
matters as they are processed sequentially. For example, if the forwarding µNF would be the
first and its result would be to forward the packet to an interface, none of the following µNF
would be executed. This logic of µNF sequencing will be handled by the COMML network
function chaining process, controlled by the service broker.

2.4 Programmable networking devices
This section describes basic types of networking devices used in the COCOON project and

presents devices suitable for physical deployment of the CPN. The section aims at supporting
future terminology for pilots building as the information provided will help in pilots configura-
tion and deployment.

2.4.1 Traditional networking devices

A traditional networking device is a box which contains both data and control plane as
explained in deliverable D1.1. This means that the entire logic and configuration of how to
process network traffic is present on the device. There are two types of these devices, unmanaged
and managed which will both be used in the project.

Unmanaged devices

These are vendor–specific devices with an integrated set of unchangeable features. Un-
managed devices are typically only used for simple traffic forwarding without any additional
functionality such as security features. These devices might be used in the project in limited
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scenarios such as transitions between different network types. An exemplar of an unmanaged
industrial switch is shown in Figure 2.4.

Figure 2.4: Exemplar of an industrial unmanaged switch

Managed devices

Managed devices provide an option to configure available features. This can include security
features, depending on the device complexity. These devices will be used for most networking
devices in the project, which does not need to run the CPN. An exemplar of managed switches
is shown in Figure 2.5.

Figure 2.5: Exemplar of managed switches

2.4.2 Programmable networking devices

Programmable network devices are different types of devices than traditional networking
devices as they offer customization of network processing. Unlike traditional networking devices
that have a pre-defined set of configurable features, programmable networking devices can be
used to implement user-defined features.

Programmable networking devices can be separated into three categories based on supported
architecture: (i) Software Defined Networking (SDN), (ii) Programming Protocol-independent
Packet Processors (P4) and (iii) eBPF. Only devices with the eBPF support will be utilized
within the project.

eBPF devices

An eBPF device enables full programmability in the most flexible instruction set and is
selected for the CPN implementation. An eBPF device can be any device which runs a Linux
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kernel with the eBPF support, which is standard in the most common kernels. This makes
eBPF suitable for various range of scenarios including the CPN implementation. Possible
deployment options for the CPN are described in the following section.

2.4.3 COCOON Programmable Node platforms

eBPF is a technology of Linux kernel and it can therefore run on any such device. This
means that traditional and programmable networking devices are usually not supported as
most of them are based on proprietary firmware. The following device types can be used for
the CPN.

Single Board Computer (SBC)

A SBC is type of a computer with all the components such as Central Processing Unit
(CPU), Random-Access Memory (RAM) and Network Interface Cards (NIC) integrated on a
single circuit board. These are typically relatively low-performance, small factor and reasonably-
priced devices suitable for portable demonstrations and development testing. The best example
is Raspberry Pi, shown in Figure 2.6, which uses Advanced RISC Machine (ARM) architecture
and can have up to 8 GB of RAM while costing under 80 GBP [1]. This provides a suitable
platform for initial real device deployment testing of the CPN within TRL 6 and selected pilots
such as the digital substation described in Section 5.2.

Figure 2.6: Exemplar of a Raspberry Pi SBC

Next Unit of Computing (NUC)

NUC is a small-form-factor bare bone computer which uses laptop components including
CPU and RAM. These components have significantly higher performance and power consump-
tion than SBC and are suitable for more demanding scenarios. These can be used in the same
way as the SBC, but in scenarios where more processing power is required such as in pilots
with higher data throughput. Both SBC and NUC might have limited support of Data Plane
Development Kit (DPDK). They might be used for initial CPN testing in pilots due to their
relatively low cost. An exemplar of a NUC from Nvidia is shown in Figure 2.7.
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Figure 2.7: Exemplar of a NUC

Servers

Servers in various forms can also be used for the CPN implementation. Their advantage is
potentially much higher performance and variability of NIC configurations which can support
DPDK. Disadvantages are higher price, larger dimensions and higher power consumption. A
server implementation will be used for initial DPDK testing at University of Glasgow (UGLA)
and might also be chosen for some pilots in case of problems with other types. An exemplar of
a server is shown in Figure 2.8.

Figure 2.8: Exemplar of a server

Whitebox / bare metal switches

The last category are whitebox or bare metal switches with open design and x86 CPU
architecture. These are manageable switches and typically run Open Network Linux (ONL) -
an open-source platform for modular Network Operating System (NOS) architecture on open
networking hardware. An example switch can be the Edgecore CSR320 [2] with temperature
hardened operations, redundant and hot swappable power modules and redundant 4+1 fans for
high availability. A whitebox switch might be used in pilots deployment if high performance in
hundreds of Gbps will be required from the CPN.
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3 COMML architecture
The COMML represents a PDP and its overall architecture and properties were described

in deliverable D1.1. The main purpose of the COMML is to provide PDP pipeline functionality
for a network programming device. This will be used by the IOL which will install µNF into this
pipeline based on requests from the CSL services. This section describes COMML architecture
and its components in detail. Figure 3.1 shows the architecture separated into two main parts:
agent and switch.

Figure 3.1: The COMML architecture

The agent part depicted by green color is responsible for communication with the CPN
controller’s IOL and for management of eBPF–related aspects. This includes eBPF loader,
Just in Time (JiT) compiler, eBPF maps and the eBPF processing pipeline managed by the
pipeline execution application. This is a software component which stays the same for all switch
types. It will use C language for the implementation.

The switch part depicted in blue color can be represented by a software switch, or a DPDK
switch depending on the target implementation. Displayed components will be the same for
both switch types, but their implementation will be different depending on the switch archi-
tecture. If there would be a different switch architecture considered, for example Express Data
Path (XDP), this would require a new switch part of the CPN architecture.
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3.1 COMML agent
The COMML agent is a component responsible for providing an abstraction layer between

the COMML switch, which is target specific, and the IOL. It is a component of the CPN with
which the IOL interacts if there is any request from a CSL service or in case IOL itself needs
to perform an operation on the CPN. The COMML agent uses the C language for optimal
performance and it handles multiple functions described in the rest of this section.

3.1.1 Agent functions
The COMML agent is responsible for a diverse set of functions which are shown in Figure

3.1. The core functionality is the eBPF processing pipeline which presents a place for µNF
installation. The controller connections manages the COMML part of the SBI. This can, upon
a request, trigger a µNF installation via the eBPF µNF loader. Additionally, the controller
connection can manage and poll eBPF maps which correspond to µNF in the eBPF process-
ing pipeline. Finally, the pipeline execution is responsible for forwarding received packets to
the corresponding stages in the eBPF processing pipeline and if required, to the controller
connection for a processing by the IOL. These functions are described in detail below.

Controller connection

The controller connection component provides the SBI on the COMML. It defines functions
for handling receive and send functions for SBI messages described in Section 3.1.2. Based on
the received requests, it can trigger an interaction with eBPF µNF loader, eBPF maps, or the
eBPF processing pipeline.

Pipeline execution

Pipeline execution is a function which is called from the COMML switch layer when a
new packet is received. The function ensures sequential traversal through the eBPF processing
pipeline. This includes all installed functions. If there is no function installed, packet is
dropped. The packet can also be forwarded to an output port at any time during the pipeline
traversal.

As mentioned in Section 2.3, eBPF µNF located in the pipeline are composed of network
primitives (such as to extract a header field, or store a defined parameter) and they form basic
building blocks for network functionality of the CSL.

eBPF micro network function (µNF) loader

When an µNF installation request is received by the COMML, the eBPF µNF loader ensures
that the function is installed into an appropriate slot in the eBPF processing pipeline. This
might include compilation if the target platform is the x86_64 architecture. On other platforms,
including ARM, eBPF are installed directly without this compilation. This is because compiled
code is translated into machine code before they are executed, while in case of interpretation
only, the codes are translated into machine code at runtime by an interpreter.

Just in Time (JiT) compilation

The JiT compiler translates generic bytecode of the eBPF µNF from the IOL into the
machine specific instruction set. The purpose is to optimize execution speed of the µNF and
it makes eBPF µNF run as efficiently as natively compiled kernel code or as code loaded as a
kernel module. The userspace JiT compiler is used only for x86_64 architecture of the COMML
switch as ARM architecture of the switch is interpreted. This is due to the smaller instruction
set of the ARM CPUs which affects the overall performance.
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Table 3.1: SBI Message Definitions

Southbound API (SBI)
Message

Type Direction Description

Hello C↔N Handshake message between CPN and CPN controller
Install C→N Install eBPF ELF on the CPN
PacketIn N→C Packet sent from CPN to CPN controller
PacketOut C→N Packet sent from CPN controller to CPN output port
TablesList C→N List all the instantiated tables
TableList C→N List the content of the tables specified
TableEntryGet C→N Get a single entry from the table specified

TableEntryInsert C→N Update or Insert an entry with the key and value
provided

TableEntryDelete C→N Remove an entry from the table specified

Notify N→C Asynchronous notification of an event with the user
defined payload

N: CPN at the COMML, C: CPN controller at the IOL.

3.1.2 Southbound API (SBI)
The CPN controller needs to have a global view of the network topology, where the CPN

controller maintains a persistent–connection with the controlled CPNs in the network. A CPN
persistent–connection is maintained by the CPN controller to transmit synchronous messages
to the CPN, and for the CPN to raise events and notifications to the CPN controller. Analogous
to the SBI defined for the SDNs, namely, OpenFlow (OF) by the Open Networking Foundation
(ONF) [3], or Network Configuration Protocol (NETCONF) by Cisco [4], this connection is
referred to as the SBI, defined specifically for CPN implementations.

The types of the messages defined for the SBI, utilized for the communication between
the CPN controller at the IOL and the CPN at the COMML are presented in the Table 3.1
and their functionality is depicted in Figure 3.2. This serves as a reference to SBI message
definitions. Features of the SBI are as follows:

• The CPN SBI supports both in–band and out–of–band control plane implementations,
and the choice depends on the infrastructure availability, and the security requirements.

• At the first step of the communication, the persistent connection is setup via a handshake
between the CPN controller and the CPN at the PDP. This is required to establish
the version compatibility between the endpoints, and acquiring the Datapath identitifier
(DPID) of the connected CPNs at the PDP. Once the connection is established between
the CPN controller and the CPN, programmability can be introduced via µNFs, installed
at the PDP pipeline using an "install" SBI message. For instance, the "L2 forwarding
µNF" will be installed automatically once the "Hello" message is received from the switch.

• The CPN controller maintains global view of the controller, wherein each eBPF program
keeps its internal state in a set of tables, and contents of these tables can be retrieved
utilizing SBI messages. For example, "TablesList" lists all tables maintained at the CPN.
The controller can also access the contents of a specific Table by TableList, access an
entry within that Table. The controller can also insert an entry into the Table, or delete
an entry from the Table upon receiving a message from the controller.
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Figure 3.2: SBI communications between CPN controller and CPN

• In addition, the SBI for CPN implementations supports asynchronous message events,
such as "notify" message transmitted from CPN to the CPN controller with user–defined
payload embedded into it. Also, the "PacketIn" message, analogous to "packet_in"
message in OF, is defined to transmit a message from the CPN to the CPN controller,
in case of a table–miss or explicit–forwarding to the controller for further processing. An
example would be a self-learning switch that will require installing the related µNF on
the PDP. The decision to add an entry into the Table is provided to the CPN via SBI
install message type.

The SBI will require an eBPF loader that works as an agent to be installed on the switch.
This agent is similar in functionality to the OF based agent, working as in intermediary between
the CPN controller and the CPN PDP.

3.1.3 eBPF implementation types
Deliverable D1.1 presented a high-level overview of possible eBPF implementations within

a system composed from three elements; the userspace, the kernel, and the NIC. To briefly
summarize, Figure 3.3 presents a general system overview with the bee symbol representing a
possible eBPF implementation. Every implementation has unique features which were described
in more details in D1.1 as:

• Userspace: This is the most flexible implementation supported on all devices and archi-
tectures, but with lower performance.

• Generic: This is a kernel implementation which does not require any support of specific
features and has similar performance to the userspace implementation.

• Native: This is an efficient kernel implementation which utilizes XDP to avoid slow and
expensive kernel network stack processing, but requires the XDP support.
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• Offloaded: This is a hardware-accelerated implementation which is currently supported
only on a very limited number of NICs, but offers the best performance.

Figure 3.3: eBPF implementation types

The userspace implementation was selected as the most suitable for the project requirements
and the rationale is presented in the following section which will explain the selected userspace
type - userspace Berkeley Packet Filter (uBPF) and its combination with the DPDK framework
which can eliminate the userspace disadvantage in lower performance.

Userspace implementation

Traditional implementation of eBPF is within the system kernel. While this provides good
performance and kernel safety verification, the main disadvantage is limited flexibility and
dependence on the kernel version. This might limit the Operating System (OS) update potential
which could cause CPN incompatibility. This might be a problem in Operational Technology
(OT) networks where compatibility and proper functionality must be ensured.

The userspace eBPF implementation, on the other hand, runs in the userspace as any other
program [5]. Therefore, it is independent of the kernel version and it enables customization.
Moreover, a code execution in userspace does not require root access. This aligns well with
the security requirements of the project goals. Finally, CPN implementation requires designing
custom eBPF functions, necessitating userspace implementation. For instance, uBPF with
customized eBPF functionality allows eBPF maps to be allocated if they have not been created,
and relocate them before the code is JiT compiled. This enables flexibility for future services
being integrated into the existing deployments.

However, the main disadvantage of the userspace implementation is lower performance when
compared with kernel implementations. Since DPDK passes packets directly between NIC and
userspace, avoiding the kernel completely, combining the userspace implementation with the
DPDK technology eliminates this drawback, detailed in Section 3.1.3. Figure 3.3 details the
implementation method. DPDK technology

uBPF

There are several userspace eBPF implementations such as uBPF, Rust userspace Berkeley
Packet Filter (rBPF) and bpftime. We selected uBPF for the CPN deployment mainly for its
maturity (Microsoft’s efforts to port eBPF to Windows operating environment and integration
with DPDK). uBPF is available under the Apache License and provided via GitHub [6].
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DPDK

DPDK is an open source framework consisting of a set of libraries for accelerating packet
processing on a wide range of CPU architectures. The CPN architecture will utilize DPDK
to avoid expensive kernel processing as DPDK bypasses kernel completely and passes traffic
directly to the userspace layer. DPDK consists of the following components [7]:

• The Ring Manager provides a multi-producer and multi-provider First In First Out
(FIFO) queue implemented as a table optimized for fast, bulk operations.

• Memory pool manager allocates objects in memory in a ring structure which can be
spread across different RAM channels.

• Network packet buffer manager provides an API for allocation of message buffers
stored in a memory pool. These are used for manipulation of network packet contents.

• The Timer manager provides an interface for precise time reference and asynchronous
or periodical function calls.

DPDK will be utilized for the CPN TRL 6 and above after a successful testing of the
plain uBPF implementation. From our previous experiments, presented in [8], DPDK achieved
slightly higher performance than the XDP implementation and approximately twice to that of
the plain userspace implementation. This proves the suitability of uBPF implementation and
overcoming its performance disadvantage by integrating DPDK.

3.1.4 eBPF instruction set

An eBPF program is a sequence of instructions [9]. An eBPF program can be written in
high-level language such as C, but before its use must be compiled into a byte code which uses
the eBPF instruction set.

• The eBPF instruction set consists of eleven 64–bit registers, a program counter, and an
implementation–specific amount (e.g., 512 bytes) of stack space.

• The eBPF programs needs to spill/fill the registers, if necessary, across calls. The reason
for spilling/filling is due to the limited number of registers.

– Spilling means that the value in the register is moved to the eBPF stack.

– Moving a variable from eBPF stack to the register is called filling.

eBPF instruction set can be separated into several instruction classes. These contain load
operations, 32-bit and 64-bit arithmetic operations and jump operations. These support un-
derflow and overflow where the value will wrap. If a division by zero operation is detected, the
destination register is set to 0.

Arithmetic instructions: Some of the basic arithmetic instructions with mathematical
expressions with two variables, dst (destination) and src (source), are:

• BPF_ADD adds source to the destination (dst += src)

• BPF_SUB subtracts source from the destination (dst -= src)

• BPF_MUL multiplies source with the destination (dst *= src)
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• BPF_DIV divides destination by the source if the source is not 0 (dst = (src != 0) ? (dst
/ src) : 0)

• BPF_AND performs logical AND operation (dst &= src)

• BPF_OR performs logical OR operation (dst | = src)

• BPF_XOR performs logical XOR operation (dst ∧ = src)

• BPF_MOV moves the source into the destination (dst = src)

Atomic operations: Some of the arithmetic instructions can be executed within a single
instruction cycle. These operate on memory and can not be interrupted or corrupted by
other access to the same memory region by other eBPF programs or means outside of this
specification. Supported atomic operations are ADD, OR, AND and XOR.

3.1.5 eBPF verifier
The eBPF verifier is a core module in eBPF–based implementations. An eBPF program

before being loaded in the kernel–space, needs to pass a set of requirements. The verification
ensures the the program is safe to execute. The process is illustrated in the Figure 3.4. Since
eBPF programs can be translated into native machine and execute in the kernel mode, it
necessitates the eBPF verifier utility. If the programs are not thoroughly verified this could lead
to several critical breaches/errors, such as, memory corruption, information leakage, leading to a
kernel crash or a kernel deadlock/hang. A significant advantage of a verifier is that the programs
can run at native speed once the program is verified and there would no computationally
expensive runtime checks.

Figure 3.4: Program verification by eBPF verifier

Further elaboration is presented on the "safe" execution of an eBPF program. The main
idea is that the program should not violate the security model of the system.

• Path check: Verifying potential paths the program would take when executed in–kernel.

• Loops: Ensures that the program runs to a completion, without loops which might result
in kernel lookup.

• Memory access: The program can access the memory in a structured way. Since reading
a memory could potentially lead to leak of sensitive information, the programs are not
allowed to read an arbitrary memory. Also, uninitialized memory cannot be read since it
could lead to leaking of sensitive information.
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• Deadlock: Programs are not allowed to reach a state of deadlock, so it is verified that
only one lock is held at a time to avoid deadlocks with multiple programs.

A functional implementation verifier’s processing is given in Listing 3.1 as an example,
where a program tries to leak a kernel address on the line 4.

1 SEC("socket1")
2 void *bpf_prog(struct __sk_buff *skb)
3 {
4 return (void*) skb; /*Try to leak pointer */
5 }

Listing 3.1: Exemplar code tries to leak kernel address

1 000000000000000 <bpf_prog >:
2 0: r0 = r1; BPF_ALU64_REG(BPF_MOV , BPF_REG_0 , BPF_REG_1)
3 1: exit; BPF_EXIT_INSN ()

Listing 3.2: The compiled eBPF instructions

The program in Listing 3.1 tries to cheat the compiler by casting. The code given in Listing
3.1 is compiled to the two BPF instructions, given in Listing 3.2. Graphically presented in
Figure 3.5, the first instruction moves whatever is in register r1 into r0, which is allowed by the
verifier, however, the second instruction, the exit is not allowed, since registr r0 should contain
a scalar to exit in principle. In this way, the eBPF verifier rejects the code by type checking.

Figure 3.5: Example of Memory Leak attempt rejected by the verifier

3.1.6 eBPF maps

The eBPF maps are leveraged by eBPF programs to share collected information and storing
the state. They are the only mechanism for persistent data storage between every µNF cycle
and they will be crucial for providing data to the CSL and IOL. Their main features are:

• The data can be stored, manipulated, retrieved, deleted, and so on, using a variety of
data structure, such as, arrays, stack, trees, hash tables, and so on.

• eBPF maps can be accessed from eBPF programs and applications in the user space, via
system calls. The process of accessing the eBPF maps is illustrated in Figure 3.6.

• Some of the supported map types are:
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– BPF_MAP_TYPE_HASH

– BPF_MAP_TYPE_ARRAY

– BPF_MAP_LRU_HASH

– BPF_STACK_TRACE

Figure 3.6: eBPF programs and applications can access the eBPF maps via system calls

As detailed in Section 3.1.3, an advantage of userspace implementation is that the eBPF
maps are located in the userspace. This enables easy addition or modification of used eBPF
maps, relevant for the required data plane switching scenarios. The CPN will enable implemen-
tation of wide range of applications, including, data plane switching scenarios. For example,
an intelligent "self–learning" switch can feasibly be implemented using the PDP’ ability to
self–insert and update the contents in the switch’s tables. For an incoming packet, the source
and destination addresses insertion decisions can be delegated to the switch, unlike traditional
OF–based implementations where the controller has all the responsibility.

3.1.7 eBPF helper functions
This section briefly lists some of the eBPF helper functions [10] required to interact with

the data structures, perform packet manipulations, interact with the system, and so on. These
functions are restricted to a white–list of helpers defined in the system kernel.

Tables 3.2, 3.3, 3.4, and 3.5 list some of the highlighted kernel helper functions that are
used to interact with the eBPF maps, such as, retrieve, update, delete, or add packet data,
computing or to manipulate the data packets, such as, updating hash values for layer 3 and
layer 4 packets, and the supporting functions. These helpers are used by eBPF programs to
interact with the system and implement custom µNFs.

3.2 COMML switch
The COMML switch is a component responsible for handling the ingress traffic. This

is the only component which is dependent on the target platform. It has two independent
implementations, one for a software switch and another one for the DPDK implementation.
This component interacts with kernel and agent functions to achieve the PDP functionality.
Its components can be separated into three sections: variables, structures, and functions.
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Table 3.2: Helper eBPF functions

eBPF map interactions
return Definition
void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)

This function performs a lookup in the map for an entry associated to key and returns
the map value associated to key, or NULL if no entry was found. This function
will be used by all µNF requiring data collection from associated maps.

long bpf_map_update_elem(struct bpf_map *map, const void *key,
const void *value, u64 flags)

This function add or update the value of the entry, associated to the key in the map
with the value provided. Returns 0 on success or negative error on failure.
long bpf_map_delete_elem(struct bfp_map * map, const void *key)
This function deletes the entry with key from the map. This function will be used by
µNF to delete an entry from the map. Returns 0 on success or negative error on failure.
long bpf_map_push_elem(struct bpf_map * map, const void *key)
This function push and element value in the map. Here, if stack/queue is full, the oldest
element is removed. Returns 0 on success or negative error for failure.
long bpf_map_pop_elem(struct bpf_map * map, void *value)
This function is used to pop an element from the map. Returns 0 on success or
negative error on failure.
long bpf_map_peek_elem(struct bpf_map * map, void *value)
This function retrieves an element from map without removing it. Returns 0 on success,
or negative error for failure.

long bpf_for_each_map_elem(struct bpf_map * map, void callback_fn,
void *callback_ctx, u64 flags)

This function calls the callback function and other map-specific parameters for each
map element.

Table 3.3: Helper packet manipulation functions

Packet manipulations
return Definition

void bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from,
u64 to, u64 size)

This function recomputes layer 3 (e.g. IP) checksum for the packet associated to skb.

long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from,
u64 to, u64 size)

This function recomputes layer 4(e.g. TCP, UDP) checksum for packet associated to skb.
u32 bpf_get_hash_recalc(struct sk_buff *skb)
This function retrieves the hash of the packet, skb → hash. Returns 32-bit hash.
s64 bpf_csum_update(struct sk_buff *skb, wsum csum)
This function adds checksum into the packet associated with skb→csum.
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Table 3.4: Helper network control functions

Network control functions
return Definition

void bpf_skb_skb_vlan_push(struct sk_buff *skb, be16 vlan_proto,
u16 vlan_tci)

This function pushes a vlan tag control information of the vlan_proto to the packet
associated to skb. Return a 0 on success or negative error on failure.
long bpf_skb_vlan_pop(struct sk_buff *skb)
This function pops a VLAN header from a packet associated to skb. It returns a 0 on
success, or a negative error on failure.

long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr,
u32 len)

This function encapsulates the packet associated to skb within layer 3 protocol header.
The header, provided in the buffer at address hdr, with len as its size in bytes, where
type indicated the protocol of the header, IPV6 or
GRE encapsulation. It returns a 0 on success, or a negative error on failure
long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
This helper function is used to load data from a packet. It can load len bytes from offset
from packet associated to skb into the buffer indicated by to.
long bpf_redirect(u32 ifindex, u64 flags)
This helper function redirects packet to another network device of index ifindex. XDP
supports redirection to the egress interface and accepts no flag. The bpf_f_ingress
value in flag is used for ingress path if the flag is present and egress otherwise. Returns
XDP_REDIRECT on success or XDP_ABBORT on error.
long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
This helper function sends out a tcp ack, where tp is the in-kernel struct tcp_sock
and rcv_nxt is the ack_seq. Returns 0 on success or negative error on failure.

3.2.1 Switch variables
Switch variables store static configuration data which are required for correct functionality.

A COMML switch keeps track of the DPID, the controller Internet Protocol (IP), and the
interfaces variables, as illustrated in Figure 3.1. These have the following purpose:

• DPID is an unique identifier of every switch and the IOL of the CPN controller uses
this information to keep track of every connected device. The DPID is represented as a
number and can be stored in the long format.

• Controller IP defines the IP address of the IOL CPN controller and its Transmission
Control Protocol (TCP) port. This is the address and port which will be used for all SBI
messages which are being sent by the CPN.

• Interfaces is a number identifying how many interfaces the CPN has.

These variables are stored within the switch class as shown in the exemplar code listing 3.3.
In this example, DPID is assigned by a function providing a random number. The IP address
is set to "127.0.0.1", which represents the local system. In this case, the CPN controller runs
on the same device as the node. The TCP port number is set to 9000. Finally, the interface
count is set to default 0.
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Table 3.5: Other function

Other functions
return Definition
u32 bpf_get_prandom_u32(void)
This function generates a pseudo-random number, i.e., a 32 bit unsigned value.

long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map,
u32 index)

This function triggers a tail call, i.e., jumps to another BPF program or µNF. This
allows for program chaining, essential for µNF chaining. For security, there is an upper
limit to successive tail calls. Once called, the program jumps to referenced program
indexed by index in the program prog_array_map.

1 variables.dpid = random_dpid ();
2 variables.controller = "127.0.0.1:9000";
3 variables.interface_count = 0;

Listing 3.3: An exemplar of COMML switch variables

3.2.2 Switch structures
Switch structures are data structures optimized for efficient storage of received packets and

their data. The COMML switch contains two main data structures, as illustrated in Figure
3.1. This includes the ring and the packet, where:

• Ring is a data structure for storing incoming packets for further processing. The ring
structure is selected for more efficient insert, access and remove operations than traditional
queues such as the FIFO queue.

• Packet is a data structure for storing a single packet information which can be accessed
by the IOL of the CPN controller. This is a more selective data structure used only for
packets which are identified to be of interest.

3.2.3 Switch functions
Switch functions are operations which the COMML switch can perform. This includes func-

tions to process the ingress traffic, the kernel functions which provide supporting functionality
and the transmit functionality responsible for sending the packet out of an interface. The
functionality of these functions is:

• Parser is responsible for initial packet processing. It will store the packet into the ring
structure and append additional metadata to the packet. This will include information
such as port number on which the packet was received and a timestamp of when the
packet was received.

• Kernel functions include all libraries and methods required for the switch functionality.
This includes kernel header files for Transmission Control Protocol / Internet Protocol
(TCP/IP) operations

• Transmit function is responsible for sending the packet out of an interface. This can
either be a physical port, all the ports (flood), or the virtual port to the CPN controller.
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4 IOL architecture
The IOL can be located either locally within the CPN, or on a dedicated server, referred

to as the CPN controller. The later is preferred due to its alignment with the overall project
goals. The advantage of having a controller is global management of all CPNs in the network.
IOL is responsible for communication with CPNs, and handling requests from CSL.

The IOL architecture is shown in Figure 4.1 and is composed from 4 main components
which are described in this section: (i) service broker responsible for main functionality and
communication with all the other components, (ii) event handler and its components responsible
for NBI and SBI communication, (iii) libraries supporting the functionality and (iv) eBPF µNFs
source codes which presents a library of all available functions which can be installed into CPNs.

Figure 4.1 shows NBI towards CSL which can be placed on the same device as IOL, or
separately; and SBI towards CPN as already explained in Section 2 and Figure 2.1. Most IOL
internal components are written in Python, but eBPF µNF are written in C. These files must
be pre-compiled into object files (.o) which can then be sent to CPNs for installation.

Figure 4.1: The IOL architecture

4.1 Service broker
The service broker is the main component of the IOL and is responsible for entire function-

ality of the layer. It uses all the other components to perform required operations. Firstly, it
uses event handler for registering requests from CSL and messages sent by CPNs. These are
processed with the ProtoBuf1 and Twisted2 libraries. Subsequently, the service broker decides

1https://protobuf.dev/overview/
2https://twisted.org/
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what to do with the request. This might include installation of a new µNF, sending a query to
a CPN map, or providing data to a CSL service.

4.2 Event handler and listeners
The controller logic will be implemented using Twisted Framework, explained in detail in

Section 4.3.1, which is an event–based programming paradigm. The CPN controller internal
control logic and interactions between the modules will follow the popular python–based con-
trollers, such as the RYU3 or the POX controller4. Twisted’s event–based mechanism allows
eBPF programs to listen and react to specific events generated by the CPN at the CPN PDP.
The event handler uses listeners on both the SBI and the NBIs and dispatches a particular
event to process the requests. Furthermore, the event handler uses custom eBPF function to
handle the packets when a packet-in or notify messages is received embedded with contents in
the payload.

The event handler, depicted in Figure 4.1, will be used to create independent events.

• The event handler dispatches a particular event.

• An event is dispatched for each message type. Example of an event will be CPNs connect
or disconnect with the CPN controller. The "connection" event corresponds to a TCP
connection establishment and a disconnection event to a connection closed event.

• CPN transmitted event: Other example of events could be, a "Hello" message transmitted
by the CPN at the time of connection handshake between the CPN controller and the
CPN, generated when a CPN connects to the operator network. Or it could be an "install"
message event to install the eBPF µNFs onto the CPN eBPF processing pipeline.

An example of connection establishment between the CPN and CPN controller is presented in
Figure 4.2. In this instance, a CPN initiates a connection request to the CPN controller.

Figure 4.2: Example of TCP handshake between CPN and the CPN controller during initial
the connection establishment

3https://ryu-sdn.org/
4https://github.com/noxrepo/pox
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The self–learning switch µNF is installed automatically when a connection request is gen-
erated. The CPN controller further installs the required µNFs as a PDP pipeline as per the
requirements of the operator. Connection establishment success is indicated by transmitting
an eBPF TCP connection established message.

4.3 Libraries and tools
In this section, we first introduce the Python–based Twisted framework and then discuss

Google’s Protocol Buffer. The section concludes with the applicability of these libraries for
functional implementations within the IOL layer.

4.3.1 The Twisted framework

Twisted is an event–driven network programming framework written in Python and licensed
under the MIT License [11]. This framework is used for writing asynchronous, event–driven
networked programs in Python for both clients and servers. Twisted projects support TCP,
User Datagram Protocol (UDP), Secure Socket Layer (SSL), Transport Layer Security (TLS)
implementations and so on.

Time

Time

Time

Task 1

Task 2

Task 3

(a) Single threaded model

(c) Multi-threaded model

(d) Asynchronous model

Time(b) Blocking in synchronous model

Wait

Figure 4.3: Programming paradigms for networking applications

Programming paradigms for networking applications: Tasks can be executed se-
quentially in a single–threaded program, concurrently on multiple processors in multi–threaded
programs, or asynchronously following an event–driven mechanism, presented in Figure 4.3. An
example of synchronous execution is an Input/Output (I/O) operation. In an I/O operation,
synchronous request may result in blocking a task for some time, all other tasks may only be
executed after the I/O is completed, as presented in Figure 4.3(b). Consequently, a single–
threaded program may lead to delayed processing despite simplified reasoning. In contrast to
this, multi–threaded programs execute tasks concurrently using separate threads executing on
multiple processors, presented in Figure 4.3(c). In multi–threaded programs, tasks are executed
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at the same time, each assigned to a thread, and, managed by the operating system, to avoid
blocking and save time, presented in Figure 4.3(c). In an asynchronous implementation, the
tasks are interleaved and supported by a single thread of control, presented in Figure 4.3(d).

Event-driven programming using Twisted: The Twisted framework offers an asyn-
chronous event–driven networking platform. Hence, flow of the programs using the program-
ming framework is determined by external events, characterized by event loops and callbacks to
invoke actions when external events take place. It offers asynchronous behavior when an action
is performed on completion of an event. This behavior enables programs to continue execu-
tion without the need for additional threads. An example of a TCP server is given in Listing
4.1, where Echo protocol simply sends back whatever it receives, the EchoFactory generates
instances of Echo, and reactor listens on TCP port 8000.

1 %%%%% Example TCP Server %%%%%%%%%%%%%%
2

3 from twisted.internet import reactor , protocol
4

5 class Echo(protocol.Protocol):
6 def datareceived(self , data):
7 self.transport.write(data)
8

9 clas EchoFactory(protocol.Factory):
10 def buildProtocol(self , addr):
11 return Echo()
12

13 reactor.listenTCP (8000, EchoFactory ())
14 reactor.run()

Listing 4.1: An examplar TCP server using Twisted

Twisted supports client–side operations. An example of web server Hypertext Transfer
Protocol (HTTP) request is presented in Listing 4.2, where an HTTP agent is created to
generate an HTTP request to "example.com" and prints the response details.

1 %%%%%%%%%%% An example of Twisted client -side request %%%%%%
2

3 from twisted.web.client impprt Agent
4 from twisted.internet import reactor
5

6 def handleResponse(response):
7 print(’Response version:’, response version)
8 print(’Response code:’, response code)
9 print(’Response phrase:’, response.phrase)

10 reactor.stop()
11

12 agent = Agent(reactor)
13 d = agent.request(b’GET , b’http :// expample.com’)
14 d.addCallback(handleResponse)
15

16 reactor.run()

Listing 4.2: An examplar of client-side application using Twisted

Twisted handles the asynchronous operations by using a reactor pattern which is an event
loop that listens to events and dispatches them to event handlers.

The Twisted Reactor: The event loop is at the center of Twisted’s operations. The
concept of a reactor involves distributing events from multiple sources to their recipients within
a single-threaded environment. In CPN, multiple switches will generate requests to the service
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broker at the IOL. In this case, the Twisted reactor will respond to the requests from the
underlying programmable switches at the PDP.

Twisted framework applicability: The Twisted framework is suitable for event–driven
programming, such as networking applications, characterized by independent execution of sev-
eral tasks, asynchronous sharing of mutable data between tasks, or encounter blocking while
waiting for events. Twisted provides the essence of multi–threading supporting the concept
of parallelism together with ease of reasoning offered by single–threaded programs. It is suit-
able for CPN to follow a synchronous event–based programming for communications between
between the CPN PDP at the COMML and the CPN controller at the IOL.

4.3.2 The Protocol Buffer

The extensible mechanism for serializing structured data, is the Protocol Buffer, licensed by
the BSD [12]. Protocol buffers generate native language bindings, similar to those generated by
JavaScript Object Notation (JSON) or XML. However, compared to JSON/XML, the Protocol
Buffers offer compactness via binary encoding leading to efficient encoding and parsing, faster
processing speeds and schema evolution via integrating newer data structures without disrupt-
ing existing applications. It is noted that protocol buffers are composed as schema; where the
data is separated from the context, thus offering light and compact message definitions.

The schema of the data is structured once, which is then used to generate codes using a
compiler, such as, "protoc" or "clang" compiler, invoked at build time, creating source files.
Source files of various programming languages can be generated, such as, Java, Python, C++,
and so on. The data serialization process for the Protocol Buffer is presented in Figure 4.4.

Figure 4.4: Data Serialization with Protocol Buffer

Definition: Owing to their language and platform independence, Protocol Buffers will be
utilized for inter–server communications and storage data on disks. An example message entity,
defined for the CPN at the PDP, is given in Listing 4.3. The Hello message, sent during the
connection handshake that will be used to automatically install an eBPF µNF onto a CPN with
the following elements "version" and DPID, using proto3 version of Google’s Protocol Buffer.

1 %%%%%%% Hello.proto %%%%%%%%
2 syntax = "proto3";
3 message Hello {
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4 uint32 version = 1;
5 uint64 dpid = 2;
6 }

Listing 4.3: Hello message entity schema definition

Attributes of CPN Protocol Buffer The main attributes of defining a protocol buffer
are the message, field, and data types.

• Message: Protocol Buffers use messages as a fundamental unit for data encapsulation.
A message is a unique information dataset comprising numerous tag-value pairs.

• Field: Messages are composed of fields. A field is unique because of its numeric tag and
name–value pairing. In Listing 4.3, two fields, version and DPID are defined.

• Data Types: Protocol Buffers handle an array of basic data types, including booleans,
integer values, string data type, and floating-point numbers, among others.

• Encoding: Protocol Buffers leverage a binary encoding method.

• Schema: Any data architecture within the Protocol Buffers is determined by a schema.
It is this schema that is depicted in the ".proto" file.

• Serialization and Deserialization: Serialization refers to the conversion of structured
data into binary data, while deserialization is the inverse process of turning binary data
into structured data.

Applicability of Protocol Buffers: Protocol Buffers are well suited to applications re-
lated to communications and data storage, where it is needed to serialize record–like, structured
typed data in a language and platform-independent extensible presentation. This is supported
by fast parsing, and functional efficiency via auto–generated classes in various programming
languages, in a compact storage structure.

Backward compatibility: Backward compatibility is standard for software products, in
contrast, Protocol Buffers offers forward compatibility. For example, the old code is able
to read new messages while ignoring newly added fields, provided some simple practices are
followed when updating the old code for the ".proto" schema definitions. In this case, the
default values will be considered for deleted fields, while the deleted repeated field will be
empty. Consequently, the newly defined code with effectively interpret older messages. The
performance efficiency, flexibility, language and platform–independence offered by Protocol
Buffers, make it suitable candidate for structuring messages for the CPN implementations.

4.3.3 Twisted and Protocols Buffer for CPN implentations

Introducing programmability into CPN is supported by an interactive management and
control entity, i.e., the service broker/orchestrator, at the IOL layer, programmable CPN, i.e.,
the PDP, at the COMML layer, and supporting mechanisms. In this context, the asynchronous
event-based programmability offered by the Twisted framework and the schematic structuring
of messages, which also offer serialization/deserialization using Protocol Buffers, make them
suitable for implementation for persistent communications. Also, the asynchronous communi-
cation can be utilized to add flexibility of communication from the CPN to CPN controller.

• The Service broker, the core entity, at the IOL, will be developed utilizing the event–based
Twisted framework, and will operate at the server–side.
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Figure 4.5: HLL (high level programming language) code to bytecode conversion paradigm
adhered by the CPN implementation style on the IOL

• The eBPF Agent at the PDP works at the client side of the Twisted–framework. The
eBPF agent at the COMML will be embedded into the programmable switch. It will
receive the binaries, i.e. Executable and Linkable Format (ELF) files, and will processes
them into a suitable format for the CPN platform and will allocate necessary tables. It
is noted that the agent will communicate with the service broker at the IOL via the SBI.

• eBPF µNF loader at the PDP, i.e., the eBPF µNF ELF Loader, is responsible for allocat-
ing the eBPF tables required by the eBPF processing pipeline and finally transforming
the eBPF bytecode it into a fast and usable format suitable for the device.

• eBPF µNF Service codes, i.e., the eBPF µNFs service codes are defined at the IOL layer.
These service codes defined utilize the protocol buffers to create eBPF µNFs. These µNFs
are pre–compiled ELF binaries.

• The CPN PDP: µNFs, such as, the Layer 2 learning switch, Layer 3 switch, packet size
distributions, False Data Injection Identification (FDII), and so on, are defined at the IOL.
These eBPF µNFs are pre–compiled ELF binaries, ready to be embedded/installed on the
eBPF Processing pipeline at the PDP via the µNF loader at the COMML. Additionally,
these µNFs can be installed as chains at the eBPF processing pipeline at the PDP.

Owing to the flexibility offered by the service implementation, the PDP is enabled to run any
pipeline as defined by the network operator.

4.3.4 LLVM

The Low Level Virtual Machine (LLVM) is a toolkit and the backend for the Clang com-
piler. Therefore, implementation of the CPN will require the LLVM to convert the High level
programming language (HLL) code for eBPF µNFs to bytecodes using the Clang library. The
tools, libraries, and header files, including the assembler, disassembler, bitcode analyzer, and
bitcode optimizer will be supported by the LLVM.

4.3.5 Clang

Clang is a compiler for c-based programs, written in HLL, that cooperates with LLVM. The
eBPF µNF ELF binaries that will be installed, via the eBPF loader, on to the switches at the
PDP processing pipeline will be pre-compiled utilizing the clang compiler.

Listing 4.4 shows examples of compilation of two µNF - learning switch and adcollect
(anomaly detection collection). The first part of the command specifies the source C code
(.c) and the last part the Clang output as an object file (.o). The object file can then be used
by the IOL and installed into the COMML pipeline.
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1 clang -O2 -target bpf -I ../ includes -c learningswitch.c -o learningswitch.o
2 clang -O2 -target bpf -I ../ includes -c adcollect.c -o adcollect.o

Listing 4.4: Exemplar compilation of two eBPF µNF for specific functionalities of learning
switch and anomaly detection in the CPN with the Clang compiler

4.4 eBPF µNF
This section explains the structure of eBPF µNF. The purpose is to provide a material

which can be used for development of custom eBPF µNF. This will be used by project partners
in supporting the pilot functionality as well as in future CPN system updates which might
require development of new CSL services and therefore corresponding µNFs. eBPF µNFs must
have specific structure in order to comply with the eBPF requirements.

Code listing 4.5 show an exemplar of an eBPF µNF which performs asset discovery of
Intelligent Electronic Device (IED) devices within a substation based on the GOOSE protocol
number identification at line 23. Specific parts of the function are explained below.

1 #include <linux/if_ether.h>
2 #include <linux/ip.h>
3 #include <linux/icmp.h>
4 #include "ebpf_switch.h"
5

6 struct countentry
7 {
8 int bytes;
9 int packets;

10 };
11

12 struct bpf_map_def SEC("maps") assetdisc = {
13 .type = BPF_MAP_TYPE_HASH ,
14 .key_size = 6,
15 .value_size = sizeof(struct countentry),
16 .max_entries = 256,
17 };
18

19 uint64_t prog(struct packet *pkt)
20 {
21 struct countentry *item;
22

23 if(pkt ->eth.h_proto == 47240)
24 {
25 if (bpf_map_lookup_elem (&assetdisc , pkt ->eth.h_source , &item) == -1)
26 {
27 struct countentry newitem = {
28 .bytes = 0,
29 .packets = 0,
30 };
31 bpf_map_update_elem (&assetdisc , pkt ->eth.h_source , &newitem , 0);
32 item = &newitem;
33 }
34 item ->packets ++;
35 item ->bytes += pkt ->metadata.length;
36 bpf_notify (0, pkt ->eth.h_source , sizeof(pkt ->eth.h_source));
37 }
38 return NEXT;
39 }
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40 char _license [] SEC("license") = "GPL";

Listing 4.5: Exemplar of asset discovery function

4.4.1 eBPF µNF code structure

An eBPF program, or in case of the COCOON project, an eBPF µNF has four main code
sections. These are:

• Imports - set libraries and files to be included in the program. This includes Linux
Kernel header files which define implementation of network protocols such as Ethernet,
IP, Internet Control Message Protocol (ICMP), and TCP.

• Data structures and maps definitions - allows definition of data structures with life scope
of the program and persistent maps.

• The main code - defines all the eBPF program logic within a single function called "prog".

• License information - the last line of an eBPF code has to provide a license type which
must be compatible with used kernel functions (otherwise the program is rejected).

4.4.2 eBPF µNF code snippets

This section describes parts of the code provided in Code listing 4.5 divided into section of
the eBPF µNF code structure.

Imports

Code listing 4.6 shows how to import external files such as kernel header files which define
common communication protocols such as Ethernet, IP and ICMP. Similarly, custom files and
libraries can be imported as shown on the line 4, where an ebpf_switch header file is loaded.

1 #include <linux/if_ether.h>
2 #include <linux/ip.h>
3 #include <linux/icmp.h>
4 #include "ebpf_switch.h"

Listing 4.6: Exemplar of imported files

Data structures and maps definition

This code section allows definition of generic data structures and eBPF maps. Defined data
structures can be inserted as values into the eBPF maps as shown in Code listing 4.7 which
show an example of the countentry structure used as value in the assetdisc eBPF map. The
countentry structure contains two variables for counting number of received bytes and packets.
This structure can then be accessed in the map by the key in the Medium Access Control
(MAC) address format. The map in this example has the hash format and maximum size of
entries which can be stored of 256.

1 struct countentry
2 {
3 int bytes;
4 int packets;
5 };
6

7 struct bpf_map_def SEC("maps") assetdisc = {
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8 .type = BPF_MAP_TYPE_HASH ,
9 .key_size = 6, // MAC address

10 .value_size = sizeof(struct countentry),
11 .max_entries = 256
12 };

Listing 4.7: Exemplar of data structure and eBPF map definition

The main code

Code listing 4.8 shows an example of the main code function prog which defines the logic of
the µNF. The code defines the countentry structure and then checks if an element with received
destination MAC address exits in the map. If it does not, the countentry structure is initialized
and the eBPF map is updated on the line 13 using the bpf_map_update_elem kernel helper
function. Finally, the structure and the map are updated with increased number of packets
and bytes received for this element. Line 18 show the bpf_notify function which sends an
information message to the IOL for further processing. The command NEXT instructs the
COMML pipeline execution component to continue in the eBPF processing pipeline.

1 uint64_t prog(struct packet *pkt)
2 {
3 struct countentry *item;
4

5 if(pkt ->eth.h_proto == 47240)
6 {
7 if (bpf_map_lookup_elem (&assetdisc , pkt ->eth.h_source , &item) == -1)
8 {
9 struct countentry newitem = {

10 .bytes = 0,
11 .packets = 0,
12 };
13 bpf_map_update_elem (&assetdisc , pkt ->eth.h_source , &newitem , 0);
14 item = &newitem;
15 }
16 item ->packets ++;
17 item ->bytes += pkt ->metadata.length;
18 bpf_notify (0, pkt ->eth.h_source , sizeof(pkt ->eth.h_source));
19 }
20 return NEXT;
21 }

Listing 4.8: Exemplar of the main code function

License information

Finally, license information must be provided as shown in Code listing 4.9. The General
Public License (GPL) license is recommended as some kernel function might require it and if
the license is not provided, the µNF will be rejected.

1 char _license [] SEC("license") = "GPL";

Listing 4.9: Exemplar of program license

4.5 Northbound API (NBI)
The NBI will provide communication between the IOL and CSL which will be handled

by service brokers in both layers. This will require inter-process communication as these two
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components run continuously and interactively react on real-time events - either from CPNs, or
from CSL services. For this reason, Representational State Transfer (REST) API is proposed at
this stage. This can be conveniently integrated within the IOL listener and the service broker.
While the concrete functionality of this interface will still depend on final CSL requirements,
in general, there will be two groups of functions: general and service-specific.

The general functions will provide similar operations as in case of the SBI, but forward the
information all the way from the CPN to the CSL. These will include:

• List, add and remove function(s)

• List, update and delete table(s)

Functions tailored for COCOON upper level applications underpinned by CSL services will
be defined in future deliverables. An example of two functions for the AD service start and
data retrieval is provided in Code sample 4.10. The first function instructs the IOL to start the
AD service and the line 4 returns a HyperText Markup Language (HTML) reply. The second
function is a request for IOL to get the monitor data, which are returned in the JSON format
and includes list of connected devices, log and the asset discovery variable.

1 @app.get("/cocoon_start_ad")
2 def cocoon_start_ad ():
3 //Do the Anomaly Detection start logic
4 return ’<h2 > AD service started </h2>’
5

6 @app.get("/cocoon_monitor_get_data")
7 def cocoon_monitor_get_data ():
8 return json.dumps({"connected_devices" : list(connected_devices),
9 "log" : log ,

10 "asset_discovery" : asset_discovery
11 })

Listing 4.10: Exemplar instantiation of two upper layer COCOON applications through the
CPN REST-based northbound API (NBI)

42



5 CPN pilot use cases
This section describes CPN pilot use cases where CPN will be deployed and tested and

an emulated scenario for the CPN development which is presented first. This will be used for
functionality validation prior any pilot deployments and thus ensuring solid foundations for
addressing requirements related to achieving the desired TRL of the COCOON solution.

5.1 Mininet emulation (SGSim)
In the first stages of the CPN development, the Smart Grid Simulator (SGSim) platform [13]

will be used. This platform creates a smart grid topology with a digital primary substation, two
digital secondary substations and realistic emulated communication including IEC104, GOOSE
and SV protocols. SGSim uses the Mininet network emulator [14] and is distributed in form
of a Virtual Machine (VM), which can be easily deployed on an average Personal Computer
(PC). This enables efficient development and testing of the CPN functionality in near real-world
conditions, corresponding to the TRL 5, without the need of specialized hardware and risk of
a real network downtime.

The SGSim default emulated topology is shown in Figure 5.1 and bounded by the blue
frame. The topology creates 9 software switches, which will be used for CPN implementation
before the deployment on real devices. The large number of nodes will enable verification of
various COMML pipelines, composed of different µNF as depicted by colored boxes under every
node. For example, DPS HV shows installation of two µNF - AD and forwarding. This will
also test parallel communication between the server and all the nodes, the SBI and the NBI,
and functionality of the dashboard.

Figure 5.1: Smart Grid Simulator (SGSim) platform for CPN development testing
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The SGSim topology and protocol communication patterns can be easily modified to repre-
sent realistic scenarios including the COCOON pilots. This will be utilized in final phases before
the real device deployment to represent topology of the target COCOON pilot. Topologies of
these pilots are described below.

5.2 Digital substation
An overview of digital substation topology is presented in Figure 5.2. The digital substation

comprises a power system simulator utilizing Real-Time Digital Simulator (RTDS), physical
IED, and workstations. All components are integrated into a Hardware in the Loop (HIL) co-
simulation. The IEDs are fully IEC 61850 compliant, meaning, the relay has the capability for
GOOSE messaging and uses SV for measurements. Using the received SV input, it calculates
the fault condition and trip status, which are then communicated via GOOSE. The GOOSE
communication represents critical substation communication, i.e., trip and block commands
through switched Ethernet. As shown in Figure 5.2, the relay data links are connected to
a network switch which also has a connection to the RTDS GTNET 2x card. The card is
interfaced to the RTDS through an internal optical fibre connection.

Figure 5.2: Digital substation topology

The digital substation contains three workstations. The first workstation is designated for
the configuration of digital substations, i.e., for adjusting the settings of IEDs. The second
workstation is specifically assigned as CPN to observe and analyze the flow of data within the
digital substation’s network. This is achievable because this CPN workstation is connected to
a span port on the switch which mirrors all the traffic to the CPN. The CPN in this pilot
will integrate CPN controller so all the layers of the CPN system architecture will run on
a single device. CSL in this case will run only the anomaly detection service which is not
resource intensive and the CPN can be therefore implemented on a relatively low-performance
device such as a SBC. At last, the third workstation serves as a compromised device within the
digital substation. This machine is used to orchestrate a cyber attack that specifically targets
components in the digital substation.
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5.3 Energy communities
A brief overview of the pilot configuration is presented in Figure 5.3. Specifically, the en-

ergy community consists of six PV plants that are connected to a Medium-Voltage (MV) EPES
through Low-Voltage (LV)/MV step-up transformers. Details regarding the electrical configu-
ration of the energy community are presented in deliverable D5.1 - Secure Energy Communities
Pilot Design, AS orchestration and infrastructure Configuration.
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Figure 5.3: Energy Community pilot configuration.

Each PV plant is monitored and controlled through a smart logger. This device belongs to
the energy community owner, i.e., I&K Electrical Engineering Systems (IKE) and can be used
either for acquiring measurements or for sending operating set-points, e.g., active and reactive
to each individual PV inverter of the plant. Note that the smart logger provides the possibility
of monitoring and controlling the PV plant at an aggregated level, e.g., receiving and sending
operating set-points at the point of interconnection with EPES.

A 4G router is physically attached to each smart logger using a wired connection. This
router belongs to the HEDNO, and is used to provide access to the smart logger, thus enabling
the remote monitoring and control of each PV plant of the energy community. Using a 4G
cellular network, the 4G router of all PV plants communicate wirelessly with a cellular gateway
(Moxa OnCell G3151) that is located at the premises of HEDNO. A SCADA Data Gateway
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(SDG) is physically attached to the cellular gateway using a wired connection. The main scope
of the SDG is to monitor and control in real-time the operation of each PV plant, and thus of
the energy community. All the data exchanged between SDG and each PV plant are stored in
a local SQL server database, as shown in Figure 5.3. It is worth mentioning that the IEC104
Standard is used as the main communication protocol. The CPN will be installed between the
cellular gateway and SDG to monitor all the traffic exchanged between the HEDNO Supervisory
Control and Data Acquisition system (SCADA) and the PV plants of the energy community.
The CPN controller will be placed either on the CPN itself, or remotely on the SDG. The
CPN in this use case will be assessed based on the performance of the FDII service aiming to
recognise anomalous signals on setpoints. Due to the fact that the CPN is placed in-line and
all the traffic must be handled by it, it will require usage of a device with a high throughput
capability. Hence, a whitebox switch or a NUC is recommended for this pilot.

5.4 PV power plants
This pilot consists of a PV power plant called “Hoyas Grandes I” with a nominal active power

of 5 MW at the Point of Interconnection (POI) which feeds power into the MV distribution
system at 20 kV. This power plant is of the string PV inverter type and is located in Granada,
Spain. The electrical layout of the plant is shown in Figure 5.4.

Figure 5.4: Electrical and communication layout of the pilot PV plant.

The plant is composed of 24 electrical nodes, 21 branches, and 19 PV inverters, with two
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voltage levels interconnected by the corresponding transformers: medium voltage at 20 kV and
low voltage at 0.8 kV. The MV collector system is composed of 2 feeders that evacuate power
from the Secondary Substations (SS) to a disconnection center. Each feeder consists of several
radial MV conductors of type RHZ1-20L 12/20KV 1X150 mm2. At the LV level, each PV
inverter is connected to a SS by a LV conductor of type RV-Al 300 mm2.

There are two SS to increase the voltage from 0.80 kV (LV inverter level) to 20 kV (MV
distribution level). Each transformer has a rated power of 3 MVA and a short circuit impedance
of 6.25 %. There are 19 PV string inverters manufactured by Huawei, model SUN2000-330KTL-
H1. The inverter has a nominal Alternating Current (AC) voltage of 800 V and a nominal power
of 300 kVA at the plant design temperature of 40◦C. There are 10 inverters connected to one
SS and 9 inverters connected to the other SS.

Based on the Spanish grid connection code and the European Network Code on Require-
ments for Generators, this plant is considered a Type B power plant, which means that it must
be able to perform the following functionalities at the POI: over-frequency response, reactive
power control, power factor control, voltage (Q-V) control and reactive power capacity within
the maximum and minimum active power dispatched. The plant level control is performed by
a Power Plant Controller (PPC) from Ingelectus. The PPC is responsible for compliance with
the grid code technical requirements at the POI by sending the necessary active and reactive
power setpoints to the inverters.

In this pilot, a communication system has been installed for the monitoring and control of
the photovoltaic plant, as described in the communication diagram of Figure 5.4. Through the
defined communication architecture, the PPC is capable of sending setpoints to each photo-
voltaic inverter, collecting measurements from the POI, and complying with the requirements
of the Spanish grid code related to the operation of the plant at that point.

To communicate with the inverters, a Huawei SmartLogger 3000 was installed at each SS,
using Programmable Logic Controller (PLC) technology. In the first SS, the SmartLogger
communicates with the 10 inverters connected to it, while in the second SS, the SmartLog-
ger communicates with the 9 inverters connected to that center. The SmartLogger is also
responsible for the conversion from fiber optics to PLC.

At the POI, there is a network analyzer for collecting measurements and sending them via
Modbus TCP/IP over fiber optics to the plant switch. The ING PPC connects to the fiber
optic network through the plant switch, using an Ethernet cable.

The CPN placement within this pilot is an item to be addressed in the subtask 8.1.4 CO-
COON platform deployment of WP8. For this reason, the placement is not finalized at this
stage and not shown in the Figure 5.4. The expected location at this stage is between the
router depicted in blue color and the ING PPC - on the green link. This represents a similar
setup like in case of the energy communities pilot and the same device is recommended for the
implementation. The CPN in this pilot will also support the FDII service.

5.5 Secure regional electricity data operations
The pilot demonstrator sets the stage for validating that the COCOON solution can be

installed and interact effectively in a real-world operational environment, particularly in safe-
guarding critical infrastructure against cyber threats. For this purpose, we have created a
replica of the SEleNe CC environment, one of the six European Regional Security Coordina-
tors (RSC), which follows rigorous security standards concerning coordination processes, to
facilitate realistic testing and validation of the COCOON solution.

The pilot environment consists of four basic components:
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• Firewall

• Switch

• Storage

• Server

The firewall, which is the first layer of security, protects the pilot environment from external
threats and is positioned between the pilot environment and the internet. Next, we have the
Layer 2/3 switch, meaning it can handle both switching and routing functions. It is connected to
the server and the storage, allowing high-speed communication between these two components,
and is also connected to the firewall to allow data to flow between the pilot environment and
external networks. Then we have the storage, which combines flash and traditional hard disk
storage to provide a balance of performance and capacity. Finally, we have the server, which
has Hypervisor-1 installed, to create and manage virtual machines that will host the CPN
controller. The CPN controller located on the server will run all the services on the CSL and
will provide the IOL functionality managing the connection to all the CPNs in other pilots. At
this stage of the testing, CPNs from the previous pilots will have CSLs and IOLs moved to this
server. Figure 5.5 illustrates the pilot architecture.

Figure 5.5: Secure regional electricity data operation pilot environment
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6 Conclusions
This deliverable presented the COCOON system architecture which will be used for the

CPN and the CPN controller development. Section 1 introduced the deliverable, its relations
with the other tasks and deliverables, scope and the used methodology. Section 2 presented
an overall view of the CPN system architecture and explained services decomposition with
examples of how a service from the CSL relates to a µNF in the IOL and how they are then
installed into a PDP in the COMML. Finally, this section also presented types of networking
devices and stated how each type will be used in the project.

Section 3 described the COMML architecture in detail. The section introduced two compo-
nents of the COMML - the agent and the switch which can be represented by a software switch,
or DPDK for better performance. The section described all components within the COMML
as well as functionality of the southbound API with its supported message type. This also
included various low-level details of eBPF such as its instruction set, verifier, maps and helper
functions. Information in this section is crucial for understanding possibilities and limitations
of eBPF µNF.

Section 4 described the IOL architecture and its components. This included the NBI, used
libraries, service broker with its elements and explanation on the eBPF µNF source codes
and the pre-compiled object files. The main goal of this section was to give an overview of
IOL functionality managed by the service broker which interacts with other components. This
section also provided examples of µNFs and their source code structure which can then be used
by the project partners when developing µNF for the CSL services. The NBI was also presented
with suggested implementation technology to be REST based on the CSL needs. This area is
still subject to changes and will be further elaborated in the following deliverables focused on
the CSL and its components.

Finally, section 5 presented CPN pilot use cases for CPN deployment. This included de-
ployment within an emulated environment of SGSim - a Mininet-based tool providing realistic
EPES communication network composed of three digital substations and a control center. This
platform provides a suitable environment for efficient CPN development and testing on the TRL
5 and allows easy topology modification according to the pilot needs. Section 5 also included
four pilots, described with figurative representations, presenting the topologies and the CPN
placement. This included TU Delft’s digital substation, HEDNO’s energy communities, Ing-
electus’s PV power plants and SELENE CC’s secure regional electricity data operations.

In general, information entailed within this deliverable will act as the basis for the develop-
ment of the entire CPN solution including its controller parts composed of the CSL and IOL
as well as the CPN itself and its COMML. Finally, this deliverable will act as a guide for all
the partners which will need to develop supporting µNF for their CSL services.
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